Плюсы и минусы реактивного двигателя

Большое значение закон сохранения импульса имеет при рассмотрении реактивного движения.

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата.

При этом появляется так называемая реактивная сила, толкающая тело. Особенность реактивной силы заключается в том, что она возникает в результате взаимодействия между собой частей самой системы без какого-либо взаимодействия с внешними телами.

  • В то время, как сила, сообщающая ускорение, например, пешеходу, кораблю или самолету, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.
  • Так движение тела можно получить в результате вытекания струи жидкости или газа.

Плюсы и минусы реактивного двигателя

В природе реактивное движение присуще в основном живым организмам, обитающим в водной среде.

Плюсы и минусы реактивного двигателя

В технике реактивное движение используется на речном транспорте (водометные двигатели), в автомобилестроении (гоночные автомобили), в военном деле, в авиации и космонавтике. Все современные скоростные самолеты оснащены реактивными двигателями, т.к. они способны обеспечить необходимую скорость полета.

В космическом пространстве использовать другие двигатели, кроме реактивных, невозможно, так как там нет опоры, отталкиваясь от которой можно было бы бы получать ускорение.

История развития реактивной техники

Создателем русской боевой ракеты был ученый-артиллерист К.И. Константинов. При весе в 80 кг далььность полета ракеты Константинова достигала 4 км.

Плюсы и минусы реактивного двигателя

Идея применения реактивного движения в летательном аппарате, проект реактивного воздухоплавательного прибора, в 1881 году была выдвинута Н.И. Кибальчичем.

Плюсы и минусы реактивного двигателя

В 1903 году знаменитый ученый-физик К.Э. Циолковский доказал возможность полета в межпланетном пространстве и разработал проект первого ракетоплана с жидкостно-реактивным двигателем.

Плюсы и минусы реактивного двигателя

К.Э. Циолковский спроектировал космический ракетный поезд, составленный из ряда ракет, работающих поочередно и отпадающих по мере израсходования горючего.

Плюсы и минусы реактивного двигателя

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу.

В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении. Импульс системы (ракета-продукты сгорания) остается равным нулю.

Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.

Движение ракеты — это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.

Плюсы и минусы реактивного двигателя

Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.

Ракетные двигатели бывают на твердом или на жидком топливе. В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.

В жидкостно-реактивных двигателях, предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, — жидкий кислород, азотную кислоту, и др.

Плюсы и минусы реактивного двигателя

Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.

Плюсы и минусы реактивного двигателя

Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы. К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.

Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.

Плюсы и минусы реактивного двигателя

При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

Так устроены прямоточные воздушно-реактивные двигатели. Поэтому при полетах в плотных слоях атосферы для более полного использования мощности реактивного двигателя на валу турбины устанавливают воздушный винт.

Следующая страница «Закон Гука»

Динамика — Класс!ная физика

Инерциальные системы отсчета.

Первый закон Ньютона — Второй закон Ньютона — Третий закон Ньютона — Свободное падение тел — Закон всемирного тяготения — Ускорение свободного падения на Земле и других небесных телах — Криволинейное движение.

Равномерное движение тела по окружности — Искусственные спутники Земли (ИСЗ) — Импульс тела. Закон сохранения импульса — Реактивное движение в природе — Реактивное движение в технике. Реактивные двигатели — Закон Гука

Источник: http://class-fizika.ru/9_19a.html

Какой ракетный двигатель самый лучший?

Плюсы и минусы реактивного двигателя Ракетные двигатели — одна из вершин технического прогресса. Работающие на пределе материалы, сотни атмосфер, тысячи градусов и сотни тонн тяги — это не может не восхищать. Но разных двигателей много, какие же из них самые лучшие? Чьи инженеры поднимутся на пьедестал почета? Пришло, наконец, время со всей прямотой ответить на этот вопрос. К сожалению, по внешнему виду двигателя нельзя сказать, насколько он замечательный. Приходится закапываться в скучные цифры характеристик каждого двигателя. Но их много, какую выбрать?

Мощнее

Ну, наверное, чем мощнее двигатель, тем он лучше? Больше ракета, больше грузоподъемность, быстрее начинает двигаться освоение космоса, разве не так? Но если мы посмотрим на лидера в этой области, нас ждет некоторое разочарование. Самая большая тяга из всех двигателей, 1400 тонн, у бокового ускорителя Спейс Шаттла. Плюсы и минусы реактивного двигателя Несмотря на всю мощь, твердотопливные ускорители сложно назвать символом технического прогресса, потому что конструктивно они являются всего лишь стальным (или композитным, но это неважно) цилиндром с топливом. Во-вторых, эти ускорители вымерли вместе с шаттлами в 2011 году, что подрывает впечатление их успешности. Да, те, кто следят за новостями о новой американской сверхтяжелой ракете SLS скажут мне, что для нее разрабатываются новые твердотопливные ускорители, тяга которых составит уже 1600 тонн, но, во-первых, полетит эта ракета еще не скоро, не раньше конца 2018 года. А во-вторых, концепция «возьмем больше сегментов с топливом, чтобы тяга была еще больше» является экстенсивным путем развития, при желании, можно поставить еще больше сегментов и получить еще большую тягу, предел тут пока не достигнут, и незаметно, чтобы этот путь вел к техническому совершенству. Второе место по тяге держит отечественный жидкостной двигатель РД-171М — 793 тонны. Плюсы и минусы реактивного двигателя Четыре камеры сгорания — это один двигатель. И человек для масштаба Казалось бы — вот он, наш герой. Но, если это лучший двигатель, где его успех? Ладно, ракета «Энергия» погибла под обломками развалившегося Советского Союза, а «Зенит» прикончила политика отношений России и Украины. Но почему США покупают у нас не этот замечательный двигатель, а вдвое меньший РД-180? Почему РД-180, начинавшийся как «половинка» РД-170, сейчас выдает больше, чем половину тяги РД-170 — целых 416 тонн? Странно. Непонятно. Третье и четвертое места по тяге занимают двигатели с ракет, которые больше не летают. Твердотопливному UA1207 (714 тонн), стоявшему на Титане IV, и звезде лунной программы двигателю F-1 (679 тонн) почему-то не помогли дожить до сегодняшнего дня выдающиеся показатели по мощности. Может быть, какой-нибудь другой параметр важнее?

Эффективнее

Какой показатель определяет эффективность двигателя? Если ракетный двигатель сжигает топливо, чтобы разгонять ракету, то, чем эффективнее он это делает, тем меньше топлива нам нужно потратить для того, чтобы долететь до орбиты/Луны/Марса/Альфы Центавра.

В баллистике для оценки такой эффективности есть специальный параметр — удельный импульс.

Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива

Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP

Плюсы и минусы реактивного двигателя Это не пожар в микроволновке, а настоящий ракетный двигатель. Правда, микроволновка ему все-таки приходится очень отдаленным родственником…

Двигатель HiPEP разрабатывался для закрытого проекта зонда для исследования лун Юпитера, и работы по нему были остановлены в 2005 году. На испытаниях прототип двигателя, как говорит официальный отчет NASA, развил удельный импульс 9620 секунд, потребляя 40 кВт энергии.

Второе и третье места занимают еще не летавшие электрореактивные двигатели VASIMR (5000 секунд) и NEXT (4100 секунд), показавшие свои характеристики на испытательных стендах. А летавшие в космос двигатели (например, серия отечественных двигателей СПД от ОКБ «Факел») имеют показатели до 3000 секунд. Плюсы и минусы реактивного двигателя Двигатели серии СПД. Кто сказал «классные колонки с подсветкой»? Почему же эти двигатели еще не вытеснили все остальные? Ответ прост, если мы посмотрим на другие их параметры. Тяга электрореактивных двигателей измеряется, увы, в граммах, а в атмосфере они вообще не могут работать. Поэтому собрать на таких двигателях сверхэффективную ракету-носитель не получится. А в космосе они требуют киловатты энергии, что не всякие спутники могут себе позволить. Поэтому электрореактивные двигатели используются, в основном, только на межпланетных станциях и геостационарных коммуникационных спутниках. Ну, хорошо, скажет читатель, отбросим электрореактивные двигатели. Кто будет рекордсменом по удельному импульсу среди химических двигателей?

С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10.

И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 — успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет.

В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.

Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше ~460, физика запрещает).

Были проекты атомных двигателей (раз, два), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней.

Есть ли еще показатели, по которым можно оценить двигатель?

Напряженней

Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем больше давление давление в камере сгорания, тем больше тяга и, главным образом в атмосфере, удельный импульс. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе.

И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР — в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами.

Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм). Плюсы и минусы реактивного двигателя Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя — РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двумястами тремя атмосферами.

Надежней

Каким бы ни был многообещающим по характеристикам двигатель, если он взрывается через раз, пользы от него немного.

Сравнительно недавно, например, компания Orbital была вынуждена отказаться от использования хранившихся десятилетиями двигателей НК-33 с очень высокими характеристиками, потому что авария на испытательном стенде и феерический по красоте ночной взрыв двигателя на РН Antares поставили под сомнение целесообразность использования этих двигателей дальше. Теперь Antares будут пересаживать на российский же РД-181. Плюсы и минусы реактивного двигателя Большая фотография по ссылке Верно и обратное — двигатель, который не отличается выдающимися значениями тяги или удельного импульса, но надежен, будет популярен. Чем длиннее история использования двигателя, тем больше статистика, и тем больше багов в нем успели отловить на уже случившихся авариях. Двигатели РД-107/108, стоящие на «Союзе», ведут свою родословную от тех самых двигателей, которые запускали первый спутник и Гагарина, и, несмотря на модернизации, имеют достаточно невысокие на сегодняшний день параметры. Но высочайшая надежность во многом окупает это.

Читайте также:  Плюсы и минусы дизельного двигателя на автомобиле

Доступней

Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще.

Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США — в 1980-х.

Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто. Плюсы и минусы реактивного двигателя Двигатель Merlin-1D. Выхлоп из газогенератора как на «Атласах» шестьдесят лет назад, зато доступно

TWR

Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX — тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) — это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150.

На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали.

Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет.

Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать.

И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.

Цена

Этот параметр во многом связан с доступностью. Если вы делаете двигатель сами, то себестоимость вполне можно подсчитать. Если же покупаете, то этот параметр будет указан явно.

К сожалению, по этому параметру не построить красивую таблицу, потому что себестоимость известна только производителям, а стоимость продажи двигателя тоже публикуется далеко не всегда.

Также на цену влияет время, если в 2009 году РД-180 оценивался в $9 млн, то сейчас его оценивают в $11-15 млн.

Вывод

Как вы уже, наверное, догадались, введение было написано несколько провокационно (простите). На самом деле, у ракетных двигателей нет одного параметра, по которому их можно выстроить и четко сказать, какой самый лучший.

Если же пытаться вывести формулу лучшего двигателя, то получится примерно следующее:Самый лучший ракетный двигатель — это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько(удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас. Скучно? Зато ближе всего к истине. И, в заключение, небольшой хит-парад двигателей, которые лично я считаю лучшими: Плюсы и минусы реактивного двигателя Семейство РД-170/180/190. Если вы из России или можете купить российские двигатели и вам нужны мощные двигатели на первую ступень, то отличным вариантом будет семейство РД-170/180/190. Эффективные, с высокими характеристиками и отличной статистикой надежности, эти двигатели находятся на острие технологического прогресса. Плюсы и минусы реактивного двигателя Be-3 и RocketMotorTwo. Двигатели частных компаний, занимающихся суборбитальным туризмом, будут в космосе всего несколько минут, но это не мешает восхищаться красотой использованных технических решений. Водородный двигатель BE-3, перезапускаемый и дросселируемый в широком диапазоне, с тягой до 50 тонн и оригинальной схемой с открытым фазовым переходом, разработанный сравнительно небольшой командой — это круто. Что же касается RocketMotorTwo, то при всем скептицизме по отношению к Брэнсону и SpaceShipTwo, я не могу не восхищаться красотой и простотой схемы гибридного двигателя с твердым топливом и газообразным окислителем.

F-1 и J-2 В 1960-х это были самые мощные двигатели в своих классах. Да и нельзя не любить двигатели, подарившие нам такую красоту:

РД-107/108. Парадоксально? Невысокие параметры? Всего 90 тонн тяги? 60 атмосфер в камере? Привод турбонасоса от перекиси водорода, что устарело лет на 70? Это все неважно, если двигатель имеет высочайшую надежность, а по стоимости приближается к «большому глупому носителю». Да, конечно, когда-нибудь и его время пройдет, но эти двигатели будут жить еще лет десять минимум, и, похоже, поставят рекорд по долголетию. Не получится найти более успешный двигатель с более славной историей.

Использованные источники

  • Материал во многом базируется на вот этой сводной таблице из английской вики, там стараются на каждую цифру дать ссылку и держать материал актуальным.
  • Полная картинка КДПВ с копирайтами, которые пришлось отрезать при кадрировании — тут.

Похожие материалы по тегу «незаметные сложности».

Источник: https://habr.com/post/371701/

Ракетные двигатели

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива.

Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива.

Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Плюсы и минусы реактивного двигателя

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

Плюсы и минусы реактивного двигателя

Виды химических двигателей

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты.

В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу.

Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу.

Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Плюсы и минусы реактивного двигателя

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР.

Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет.

В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания.

Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу.

Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении.

Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Плюсы и минусы реактивного двигателя

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

Плюсы и минусы реактивного двигателя

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания.

Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД.

Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах.

Читайте также:  Плюсы и минусы полифазного сна

Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию.

Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе.

В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения.

В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Плюсы и минусы реактивного двигателя

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с.

Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами.

Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Плюсы и минусы реактивного двигателя

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания.

Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге.

В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой.

В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма.

Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

  • Плюсы и минусы реактивного двигателя
  • Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.
  • Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи.

Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах.

Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

Плюсы и минусы реактивного двигателя

Источник: http://zewerok.ru/rd/

Принцип работы реактивного двигателя. Описание и устройство :

Реактивное движение – это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей.

Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя.

Принцип работы его основан именно на этой силе. Как же действует такой двигатель? Попробуем разобраться.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Плюсы и минусы реактивного двигателя

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем – это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох.

Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине.

В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику – жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

Плюсы и минусы реактивного двигателя

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород.

Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского.

Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания.

Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу.

За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Плюсы и минусы реактивного двигателя

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

  • Устроен типичный реактивный двигатель следующим образом. Основные его узлы — это:
  • — компрессор;
  • — камера для сгорания;
  • — турбины;
  • — выхлопная система.

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин.

Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение.

Этот процесс еще больше увеличивает тепловую энергию.

Плюсы и минусы реактивного двигателя

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов.

Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему.

Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Мотор самолета

В самолетах также используются эти двигатели. Так, например, в огромных пассажирских лайнерах устанавливают турбореактивные агрегаты. Они отличаются от обычных наличием двух баков. В одном находится горючее, а в другом – окислитель. В то время как турбореактивный мотор несет только топливо, а в качестве окислителя используется воздух, нагнетаемый из атмосферы.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть – это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Плюсы и минусы реактивного двигателя

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Плюсы и минусы реактивного двигателя

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.

В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления.

Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Синхронные РД

Это электрические моторы. Принцип работы синхронного реактивного двигателя аналогичен работе шагового агрегата. Переменный ток подается на статор и создает магнитное поле вокруг ротора. Последний вращается за счет того, что пытается минимизировать магнитное сопротивление. Эти моторы не имеют отношения к освоению космоса и запуску шаттлов.

Источник: https://www.syl.ru/article/369668/printsip-rabotyi-reaktivnogo-dvigatelya-opisanie-i-ustroystvo

Турбированный двигатель: устройство, особенности эксплуатации

Наличие на автомобилях турбированных двигателей обеспечивает первым заметную прибавку к мощности в сравнении с аналогичными моделями, оснащенными «атмосферными» моторами. Подобные агрегаты дополняют устройство как бензиновых, так и дизельных силовых установок.

О турбине

Турбонаддув бывает двух видов: низкого и высокого давления. Первый тип турбины применяется для более качественного смешивания топлива за счет создания турбулентных воздушных потоков в моторах.

Но наиболее эффективным считается турбированный двигатель высокого давления. В сравнении с «атмосферными» моторами того же объема подобные агрегаты развивают примерно в 1,5 раза больше мощности.

Некоторые производители и владельцы устанавливают на автомобили сразу 2 турбины, в результате чего получили малолитражные моторы, способный составить конкуренцию силовым установкам гораздо большего объема.

Плюсы и минусы реактивного двигателя

Рейтинг надежности у турбореактивных двигателей ниже, так как они имеют довольно сложную конструкцию.

В частности, их конструкция дополняется следующими элементами:

  • Клапан, предназначенный для устранения избыточного давления, которое способно повредить мотор.
  • Интеркулер. Устройство используется для охлаждения воздуха, нагреваемого, когда обороты турбины достигли высокой отметки.
Читайте также:  Пирсинг языка: плюсы и минусы, стоит ли делать

О принципах работы турбокомпрессора

Как работает турбина? Почему нельзя сразу глушить движок, дополненный таким агрегатом? Ответы на эти вопросы важны, так как, зная их, легче соблюдать особенности эксплуатации турбированного двигателя.

Схематично устройство турбины включает в себя следующие элементы:

  1. Компрессорный хаузинг, следом за которым располагается компрессорное кольцо, отвечающее за сжатие воздуха.
  2. Воздушный фильтр.
  3. Задняя пластина компрессора.
  4. Шарикоподшипник, установленный на валу.
  5. Точки подачи и слива масла.
  6. Турбинный хаузинг.
  7. Турбинное колесо, за счет которого осуществляется преобразование энергии выхлопных газов в энергию вращения вала.

Плюсы и минусы реактивного двигателя

Важно: воздушный фильтр является основным источником возникновения проблем двигателя с турбонаддувом. Этот элемент рекомендуется регулярно менять.

Принцип работы турбокомпрессора заключается в следующем:

  1. Воздух, проходя через воздушный фильтр, пронимает во входное отверстие агрегата.
  2. Воздушные массы подвергаются сжатию. Одновременно с этим в них увеличивается уровень содержания кислорода. На данном этапе возникает нагрев воздуха, вследствие чего снижается его плотность.
  3. Покидая турбокомпрессор, массы воздуха попадают в интеркулер, где происходит их охлаждение. Последний элемент конструкции также предотвращает возможность детонации топливной смеси в двигателе.
  4. На последнем этапе сжатый воздух через дроссель проникает через впускной коллектор в цилиндры мотора.

Как видно, принцип работы подобного двигателя выглядит достаточно простым. Турбодвигатель часть выхлопных газов, возникших вследствие сгорания топливной смеси в цилиндрах, передает обратно в выпускной коллектор турбины. Этот воздушный поток запускает движение вала, на другом конце которого располагается компрессор. В результате последний вновь приступает к сжатию воздуха.

Плюсы и минусы реактивного двигателя

Благодаря чему турбированный двигатель обладает большей мощностью в сравнении с «атмосферным»?

После того как сжатый воздух попадает в цилиндр, в последнем увеличивается уровень содержания кислорода при сохранении прежних параметров цилиндра. Поэтому за один такт сжигается больше топливной смеси, чем в «атмосферном» моторе аналогичного объема.

Правила эксплуатации

До того, как установить турбину на свой двигатель, необходимо уяснить для себя условия пользования подобных агрегатов. Соблюдая их, можно увеличить срок «жизни» моторов.

Правильное эксплуатирование турбированных двигателей предполагает соблюдение следующих рекомендаций:

Регулярно проверять уровень масла

Существует множество советов о том, как правильно эксплуатировать турбореактивные двигатели. Однако главное условие заключается именно в регулярной проверке масла.

Отсутствие смазки ведет к быстрому изнашиванию подшипников турбины, следствие чего она вскоре перестает работать.

Кроме того, быстрый расход масла свидетельствует о наличие проблемы в моторе. Возможно, из строя вышел масляный насос или другая деталь.

При запуске не держать долго педаль газа

Турбированные двигатели достигают максимального давления уже на низких оборотах. Поэтому долго жать на педаль газа. Иначе турбина будет работать на «холостом» ходу, что сокращает срок ее эксплуатации.

Использовать только качественное масло

Некачественное масло — это вторая наиболее распространенная причина быстрого износа турбины. Причем не важно, установлена ли она на бензиновом двигателе, или на дизельном. Более того, подобная смазка негативно влияет и на состоянии мотора.

Необходимо заливать только то масло, которое рекомендует производитель конкретной силовой установки.

Важно также отметить, что тип смазки, применяемой на турбированных моторах, отличается от той жидкости, которая используется на «атмосферных» агрегатах. Это объясняется тем, что в первых создается больший уровень давления, вследствие чего увеличиваются требования к качеству масла. Данное обстоятельство необходимо учитывать при форсировании «атмосферного» движка.

Другая важная особенность эксплуатации турбированных моторов заключается в следующем: Смешивать разные сорта масла нельзя.

Не рекомендуется использовать смазку иной марки, даже если она имеет аналогичные характеристики.

Плюсы и минусы реактивного двигателя

Обязательно проверить состояние мотора после ремонта

В первую очередь необходимо обратить на наличие масла и его состав: жидкость должна быть прозрачной. Следом проверяется работа коленчатого вала при выключенном моторе.

И последнее: нужно запустить движок и продержать его на «холостом» ходе в течение 5-10 минут, внимательно прислушиваясь к нестандартному звучанию, наличию посторонних стуков и тому подобного.

Применять только качественное дизельное топливо

Чтобы дизельный двигатель, оснащенный турбиной, сохранил свои первоначальные характеристики, необходимо приобретать только качественное горючее. Низкосортное топливо имеет множество примесей, которые быстро засоряют топливную систему. В результате снижается уровень мощности, развиваемой двигателем.

Чтобы нивелировать ее падение, турбина начинает работать на пределе собственных возможностей, что провоцирует быстрый износ агрегата.

На морозе двигатель должен поработать на «холостом» ходу

При низких температурах масло становится более вязким. Поэтому рекомендуется запустить турбированный мотор и продержать его на «холостом» ходу, чтобы смазка начала циркулировать внутри агрегата.

Кроме того, турбореактивные двигатели не рекомендуется сразу останавливать на морозе. Прежде чем заглушить, им необходимо некоторое время также поработать на «холостом» ходу. Данная рекомендация объясняется тем, что на высоких оборотах в силовых агрегатах температура поднимается до максимальных значений.

Плюсы и минусы реактивного двигателя

Поэтому резкое выключение мотора может спровоцировать температурный перепад, из-за чего срок эксплуатации установки и турбины снижается.

Регулярно доводить двигатель до высоких оборотов

Турбина должна регулярно работать. Иначе она вскоре выйдет из строя. Рекомендуется хотя бы раз в неделю эксплуатировать двигатель, когда тот работает на высоких оборотах. В результате работы системы наддува происходит процесс ее самоочистки.

Наиболее удачным вариантом эксплуатации турбодвигателя является регулярная езда на средних оборотах.

Достоинства и недостатки

Надежный турбированный мотор — это заслуга его владельца. Только соблюдение условий эксплуатации обеспечит комфортную и длительную езду на автомобиле.

Подводя итог всему, что было приведено выше, нельзя не рассмотреть плюсы и минусы турбированных силовых установок.

Плюсы Минусы
Высокая мощность мотора Необходимость прогрева
Малый объем при высокой отдаче Дорогостоящее обслуживание и высокая цена
Низкий уровень потребления топлива Сильный нагрев
Наличие турбоям

Источник

Источник: https://koleso.temaretik.com/1503407535593883953/turbirovannyj-dvigatel-ustrojstvo-osobennosti-ekspluatatsii/

Турбореактивный двигатель

Авторы: М. Ю. Куприков

ТУРБОРЕАКТИ́ВНЫЙ ДВИ́ГАТЕЛЬ (ТРД), авиационный газотурбинный двигатель, в котором тяга создаётся струёй газов, вытекающих из реактивного сопла. ТРД применяются на дозвуковых и сверхзвуковых самолётах как маршевые двигатели либо как подъёмные двигатели на самолётах вертикального взлёта и посадки.

ТРД (рис. 1) стал самым распространённым в авиации воздушно-реактивным двигателем (ВРД). Он является базой для создания целого семейства двигателей, объединяемых под общим названием газотурбинных двигателей (ГТД). ТРД используют в качестве горючего керосин, находящийся в топливных баках ЛА, а в качестве окислителя – кислород воздуха.

Тяга двигателя $P_{дв}$ создаётся за счёт преобразования потенциальной (тепловой) энергии, выделяющейся при сгорании (взрыве) топливо-воздушной смеси, в кинетическую энергию потока газа, а возникающая при этом реакция используется как движущая сила: $$P_{дв} = m_{ceк}(W_c – V) + f_c(p_c – p_0),$$где $P_{дв}$ – сила тяги двигателя (Н); $m_{ceк}$ – секундный расход воздуха и горючего (керосина) через двигатель (кг/с); $W_c$ – скорость истечения газов из сопла (м/с); $V$ – скорость полёта, (м/с); $f_c$ – площадь среза сопла (м2) ; $p_c$ – давление на срезе сопла (Па); $p_0$ – давление окружающей среды (Па).

Поток воздуха, попадающего в двигатель, тормозится во входном устройстве (1), в результате чего давление воздуха перед осевым компрессором (2) повышается. Ротор (вращающаяся часть) объединяет ряд рабочих колёс компрессора (3), представляющих собой диски с закреплёнными на них рабочими лопатками.

При вращении ротор, подобно вентилятору, воздействует на воздушный поток и заставляет его двигаться вдоль оси двигателя через ряд неподвижно закреплённых по окружности на корпусе двигателя спрямляющих лопаток (4). Каждый ряд спрямляющих лопаток располагается за соответствующим рабочим колесом, образуя статор (неподвижную часть компрессора).

Ряд неподвижных лопаток, называемых спрямляющим аппаратом, в совокупности с рядом рабочих лопаток рабочего колеса называется ступенью компрессора. Проходя через многоступенчатый осевой компрессор, воздух сжимается, его давление многократно (в 10–40 раз) повышается.

Отношение давления воздуха на выходе из компрессора $p_2$ к давлению на входе $p_1$ называется степенью повышения давления: $p_к=p_2 /p_1$.

Сжатый воздух из компрессора попадает в камеру сгорания (7), образованную несколькими расположенными по периметру корпуса жаровыми трубами  (или одной кольцевой трубой).

Примерно 25–35% от общего потока воздуха направляется непосредственно в жаровые трубы, где происходит основной процесс сгорания керосина, поступающего в распылённом состоянии через форсунки (5), образуя при этом газовоздушную смесь  рабочего тела.

Другая часть воздуха обтекает наружные поверхности жаровых труб, охлаждая их, и на выходе из камеры сгорания смешивается с продуктами сгорания для их охлаждения, что позволяет поддерживать температуру газовоздушной смеси в камере сгорания на уровне ($Т_г$ = 1400–1900 К), определяемом допустимой теплопрочностью стенок камеры сгорания, лопаток ротора (8) и лопаток спрямляющего аппарата турбины (9), на которую образовавшийся в камере сгорания и имеющий высокую температуру и давление газовый поток устремляется через суживающийся сопловой аппарат камеры сгорания. Часть потенциальной энергии газовоздушной смеси, полученной при сжатии воздуха в компрессоре и нагреве его в камере сгорания, преобразуется ротором газовой турбины, устройство которой аналогично устройству компрессора, в механическую работу вращения ротора компрессора, соединённого общим валом (6) с ротором турбины.

Кроме того, часть механической мощности отбирается от вала (6) для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы. От компрессора также забирается часть сжатого воздуха для различных бортовых систем.

Основная часть энергии продуктов сгорания идёт на ускорение газового потока в выходном устройстве ТРД – реактивное сопло (10), т. е. на создание реактивной тяги.

Стартовая закрутка вала (5) осуществляется стартером, приводимым при запуске двигателя от наземного или бортового электроагрегата, при дальнейшей работе двигателя вращение вала (и ротора компрессора) поддерживается вращением ротора турбины.

При запуске двигателя топливовоздушная смесь в камере сгорания зажигается специальным запальным устройством, при дальнейшей работе двигателя горение поддерживается уже имеющимся факелом пламени.

Турбореактивный двигатель с форсажной камерой (ТРДФ) (рис. 2) широко применяется на скоростных боевых самолётах.

Как и в ТРД, основу внутреннего контура ТРДФ составляет турбокомпрессор (газогенератор), включающий в себя компрессор, камеру сгорания и турбину. Между турбокомпрессором и соплом (обычно регулируемым, т. е.

с изменяемой площадью потока) установлена форсажная камера, в которой сжигается дополнительное горючее (керосин), подаваемое через форсунки форсажной камеры.

Стабилизаторы пламени обеспечивают устойчивое горение обеднённой кислородом топливной смеси (часть кислорода воздуха использована при горении керосина в камере сгорания турбокомпрессора). За счёт сжигания дополнительного топлива происходит увеличение тяги (форсирование, форсаж – франц.

forçage, от forcer – вынуждать, чрезмерно напрягать) на 50% и более, что связано, однако, с резким повышением расхода топлива. Поэтому режим форсажа используется кратковременно на взлёте для сокращения длины разбега и в воздушном бою для увеличения скороподъёмности и скорости полёта. Использование форсажных режимов на крейсерском полёте экономически невыгодно.

Основными характеристиками двигателя любого типа являются: масса двигателя $m_{дв}$ и его габариты; стартовая тяга двигателя $P_{дв0}$; удельная масса двигателя $g_{дв} = m_{дв}/P_{дв0}$ (кг/Н); удельный расход двигателя $C_р$,  показывающий расход массы топлива на создание 1Н  тяги в час, [кг/(Н×ч)]; высотно-скоростные  характеристики  $P = f(H, V)$ и $C_р = f(H,V)$; ресурс двигателя.

Качественный характер высотно-скоростных характеристик ГТД включает тяговые и высотные характеристики, которые определяются главным образом степенью повышения давления в компрессоре, степенью двухконтурности и температурой газа перед турбиной.

Потребная для определённых условий полёта тяга (мощность) обеспечивается выбором соответствующего режима работы силовой установки. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем (РУД), перемещение которого регулирует, т. е. увеличивает или уменьшает – дросселирует (от нем. drosseln – душить, сокращать), расход топлива.

Большинство современных пассажирских самолётов оборудуются вспомогательной силовой установкой (ВСУ) – небольшим ГТД, вся мощность которого используется не для создания тяги, а для снабжения энергией бортовых систем самолёта.

При стоянке на земле ВСУ обеспечивает работу электросистем, радиооборудования, системы кондиционирования самолёта, техническое обслуживание самолёта и его систем, запуск основных двигателей, что делает самолёт независимым от аэродромных источников энергии.

ВСУ может применяться и как источник энергии в аварийных ситуациях в полёте.

Разновидность ТРД – турбовентиляторный двигатель.

Двигатель самолёта является основным источником шума в кабине и на местности.

Для удовлетворения требований по уровню допустимого шума в конструкции самолёта используют материалы и устройства, изолирующие источник шума или поглощающие шум.

Звукоизоляционные прокладочные материалы ограждают источник шума и ослабляют звук при его проникновении через ограждение (см. в статье Авиационная акустика).

Источник: https://bigenc.ru/technology_and_technique/text/4423016

Ссылка на основную публикацию
Adblock
detector